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ABSTRACT

We identify a class of over-parameterized deep neural networks with standard
activation functions and cross-entropy loss which provably have no bad local valley,
in the sense that from any point in parameter space there exists a continuous path
on which the cross-entropy loss is non-increasing and gets arbitrarily close to zero.
This implies that these networks have no sub-optimal strict local minima.

1 INTRODUCTION

It has been empirically observed in deep learning (Dauphin et al., 2014; Goodfellow et al., 2015) that
the training problem of over-parameterized1 deep CNNs (LeCun et al., 1990; Krizhevsky et al., 2012)
does not seem to have a problem with bad local minima. In many cases, local search algorithms like
stochastic gradient descent (SGD) frequently converge to a solution with zero training error even
though the training objective is known to be non-convex and potentially has many local minima (Auer
et al., 1996; Safran & Shamir, 2018), even for simple models like deep linear networks (Kawaguchi,
2016). This indicates that the problem of training practical over-parameterized neural networks is
still far from the worst-case scenario where the problem is known to be NP-hard (Blum & Rivest.,
1989; Sima, 2002; Livni et al., 2014; Shalev-Shwartz et al., 2017). A possible hypothesis is that
the loss landscape of these networks is“well-behaved” so that it becomes amenable to local search
algorithms like SGD and its variants. As not all neural networks have a well-behaved loss landscape,
it is interesting to identify sufficient conditions on their architecture so that this is guaranteed. In this
paper our motivation is to come up with such a class of networks in a practically relevant setting, that
is we study multi-class problems with the usual empirical cross-entropy loss and deep (convolutional)
networks and almost no assumptions on the training data, in particular no distributional assumptions.
Thus our results directly apply to the networks which we use in the experiments.

Bad local valleys

Global Minimum Global Minimum

Figure 1: An example loss landscape with bad local valleys (left) and without bad local valley (right).

Our contributions. We identify a family of deep networks with skip connections to the output
layer whose loss landscape has no bad local valleys (see Figure 1 for an illustration). Our setting is

1These are the networks which have more parameters than necessary to fit the training data
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for the empirical loss and there are no distributional assumptions on the training data. Moreover, we
study directly the standard cross-entropy loss for multi-class problems. There are little assumptions
on the network structure which can be arbitrarily deep and can have convolutional layers (weight
sharing) and skip-connections between hidden layers. From a practical perspective, one can generate
an architecture which fulfills our conditions by taking an existing CNN architecture and then adding
skip-connections from a random subset of N neurons in the network to the output layer (see Figure 2
for an illustration). For these networks we show that there always exists a continuous path from any
point in parameter space on which the loss is non-increasing and gets arbitrarily close to zero.

Beside the theoretical analysis, we show in experiments that despite achieving zero training error,
the aforementioned class of neural networks generalize well in practice when trained with SGD
whereas an alternative training procedure guaranteed to achieve zero training error has significantly
worse generalization performance and is overfitting. Thus we think that the presented class of neural
networks offer an interesting test bed for future work to study the implicit bias/regularization of SGD.

2 DESCRIPTION OF NETWORK ARCHITECTURE

We consider a family of deep neural networks which have d input units, H hidden units, m output
units and satisfy the following conditions:

1. Every hidden unit of the first layer can take as input an arbitrary subset of units of the input
layer.

2. Every hidden unit at higher layers can take as input an arbitrary subset of hidden units from
an arbitrary subset of previous hidden layers.

3. Any group of hidden units lying on the same layer can have non-shared or shared weights,
in which case the number of incoming units has to be equal.

4. There exist N hidden units which are connected to the output nodes with independent
weights (N denotes the number of training samples).

5. The output of every hidden unit j in the network, denoted as fj : Rd → R, is given as

fj(x) = σj

(
bj +

∑
k:k→j

fk(x)uk→j

)
where x ∈ Rd is an input vector of the network, σj : R→ R is the activation function of
unit j, bj ∈ R is the bias of unit j, and uk→j ∈ R the weight from unit k to unit j.

This definition covers a class of deep fully connected and convolutional neural networks with an
additional condition on the number of connections to the output layer. In particular, while conventional
architectures have just connections from the last hidden layer to the output, we require in our setting
that there must exist at least N neurons, “regardless” of their hidden layer, that are connected to the
output layer. Essentially, this means that if the last hidden layer of a traditional network has just
L < N neurons then one can add connections from N − L neurons in the hidden layers below it to
the output layer so that the network fulfills our conditions.

Similar skip-connections have been used in DenseNet (Huang et al., 2017) which are different from
identity skip-connections as used in ResNets (He et al., 2016). In Figure 2 we illustrate a network with
and without skip connections to the output layer which is analyzed in this paper. We note that several
architectures like DenseNets Huang et al. (2017) already have skip-connections between hidden
layers in their original architecture, whereas our special skip-connections go from hidden layers
directly to the output layer. As our framework allow both kinds to exist in the same network (see
Figure 2 for an example), we would like to separate them from each other by making the convention
that in the following skip-connections, if not stated otherwise, always refer to ones which connect
hidden neurons to output neurons.

We denote by d the dimension of the input and index all neurons in the network from the input layer
to the output layer as 1, 2, . . . , d, d+ 1, . . . , d+H, d+H + 1, . . . , d+H +m which correspond
to d input units, H hidden units and m output units respectively. As we only allow directed
arcs from lower layers to upper layers, it follows that k < j for every k → j. Let N be the
number of training samples. Suppose that there are M hidden neurons which are directly connected
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Figure 2: Left: An example neural network represented as directed acyclic graph. Right: The same
network with skip connections added from a subset of hidden neurons to the output layer. All neurons
with the same color can have shared or non-shared weights.

to the output with independent weights where it holds N ≤ M ≤ H. Let {p1, . . . , pM} with
pj ∈ {d+ 1, . . . , d+H} be the set of hidden units which are directly connected to the output units.
Let in(j) be the set of incoming nodes to unit j and uj = [uk→j ]k∈in(j) the weight vector of the
j-th unit. Let U = (ud+1, . . . , ud+H , bd+1, . . . , bd+H) denote the set of all weights and biases of all
hidden units in the network. Let V ∈ RM×m be the weight matrix which connects the M hidden
neurons to the m output units of the network. An important quantity in the following is the matrix
Ψ ∈ RN×M defined as

Ψ =

 fp1
(x1) . . . fpM (x1)
...

...
fp1(xN ) . . . fpM (xN )

 (1)

As Ψ depends on U , we write ΨU or Ψ(U) as a function of U . Let G ∈ RN×m be the output of the
network for all training samples. In particular, Gij is the value of the j-th output neuron for training
sample xi. It follows from our definition that

Gij = 〈Ψi:, V:j〉 =

M∑
k=1

fpk(xi)Vkj , ∀i ∈ [N ], j ∈ [m]

Let (xi, yi)
N
i=1 be the training set where yi denotes the target class for sample xi. In this paper we

want to analyze the commonly used cross-entropy loss given as

Φ(U, V ) =
1

N

N∑
i=1

− log
( eGiyi∑m

k=1 e
Gik

)
(2)

The cross-entropy loss is bounded from below by zero but this value is not attained. In fact the global
minimum of the cross-entropy loss need not exist e.g. if a classifier achieves zero training error
then by upscaling the function to infinity one can drive the loss arbitrarily close to zero. Due to this
property, we do not study the global minima of the cross-entropy loss but the question if and how one
can achieve zero training error. Moreover, we note that sufficiently small cross-entropy loss implies
zero training error as shown in the following lemma.

Lemma 2.1 If Φ(U, V ) < log(2)
N , then the training error is zero.

Proof: We note that if Φ(U, V ) < log(2)
N , then it holds due to the positivity of the loss,

maxi=1,...,N − log
( eGiyi∑m

k=1 e
Gik

)
≤

N∑
i=1

− log
( eGiyi∑m

k=1 e
Gik

)
< log(2).

This implies that for all i = 1, . . . , N ,

log
(
1 +

∑
k 6=yi

eGik−Giyi
)
< log(2) =⇒

∑
k 6=yi

eGik−Giyi < 1.
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In particular: maxk 6=yi e
Gik−Giyi < 1 and thus maxk 6=yi Gik − Giyi < 0 for all i = 1, . . . , N

which implies the result. �

3 MAIN RESULT

The following conditions are required for the main result to hold.

Assumption 3.1 1. All activation functions {σd+1, . . . , σd+H} are real analytic and strictly
increasing

2. Among M neurons {p1, . . . , pM} which are connected to the output units, there exist N
neurons (N ≤M ) whose activation functions satisfy one of the following conditions:

• σpj is bounded and limt→−∞ σpj (t) = 0, ∀ 1 ≤ j ≤M
• σpj are the softplus activation function (see Equation (3)), and from every neuron pj

there exists a backward path to the first hidden layer such that on this path there is no
neuron with skip-connection to the output layer.

3. Let n1 be the number of units in the first hidden layer and denote by Si for i ∈ [d+1, d+n1]
their support, then for all r 6= s ∈ N and i 6= j ∈ [d+ 1, d+ n1], it holds

xr|Si 6= xs|Sj ,
where we assume that |Si| = |Sj | for all i, j ∈ [d+ 1, d+ n1].

The first condition of Assumption 3.1 is satisfied for softplus, sigmoid, tanh, etc, whereas the
second condition is fulfilled for sigmoid and softplus. For softplus activation function (smooth
approximation of ReLU),

σγ(t) =
1

γ
log(1 + eγt), for some γ > 0, (3)

we require an additional assumption on the network architecture. The third condition is needed for
CNN architectures and could be violated if they have very small receptive fields. However, if the
condition is violated for the given training set then after an arbitrarily small random perturbation of
all training inputs it will be satisfied with probability 1. Note that the M neurons which are directly
connected to the output units can lie on different hidden layers in the network. Also there is no
condition on the width of every individual hidden layer as long as the total number of hidden neurons
in the network is larger than N so that our condition M ≥ N is feasible.

Overall, we would like to stress that Assumption 3.1 covers a quite large class of interesting network
architectures but nevertheless allows us to show quite strong results on their empirical loss landscape.

The following key lemma shows that for almost all U , the matrix Ψ(U) has full rank.

Lemma 3.2 Under Assumption 3.1, the set of U such that Ψ(U) has not full rank N has Lebesgue
measure zero.

While we conjecture that the result of Lemma 3.2 holds for softplus activation function without the
additional condition as mentioned in Assumption 3.1, the proof of this is considerably harder for such
a general class of neural networks since one has to control the output of neurons with skip connection
from different layers which depend on each other. However, please note that the condition is also not
too restrictive as it just might require more connections from lower layers to upper layers but it does
not require that the network is wide.

We are now ready to state our main result. In the following, we define the α-sublevel set of Φ
as Lα = {(U, V ) | Φ(U, V ) < α} . We define a local valley to be a connected component of a
certain sublevel set Lα. A bad local valley is a local valley on which the loss cannot be made
“arbitrarily small”. Intuitively, a typical example of a bad local valley is a small neighborhood around
a sub-optimal strict local minimum.

Theorem 3.3 The following holds under Assumption 3.1:
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1. There exist uncountably many solutions with zero training error.

2. The loss landscape of Φ does not have any bad local valley.

3. There exists no suboptimal strict local minimum.

4. There exists no local maximum.

Proof:

1. By Lemma 3.2 the set of U such that Ψ(U) has not full rank N has Lebesgue measure zero.
Given U such that Ψ has full rank, the linear system Ψ(U)V = Y has for every possible
target output matrix Y ∈ RN×m at least one solution V . As this possible for almost all U ,
there exist uncountably many solutions achieving zero training error.

2. Let C be a non-empty, connected component of some α-sublevel set Lα for α > 0. Suppose
by contradiction that the loss on C cannot be made arbitrarily small, that is there exists
an ε > 0 such that Φ(U, V ) ≥ ε for all (U, V ) ∈ C, where ε < α. By definition,
Lα can be written as the pre-image of an open set under a continuous function, that is
Lα = Φ−1({a | a < α}), and thus Lα must be an open set (see Proposition A.2). Since C
is a non-empty connected component of Lα, C must be an open set as well, and thus C has
non-zero Lebesgue measure. By Lemma 3.2 the set of U where Ψ(U) has not full rank has
measure zero and thus C must contain a point (U, V ) such that Ψ(U) has full rank. Let Y
be the usual zero-one one-hot encoding of the target network output. As Ψ(U) has full rank,
there always exist V ∗ such that Ψ(U)V ∗ = Y t∗, where t∗ = log

(
m−1

e
ε
2−1

)
Note that the loss

of (U, V ∗) is

Φ(U, V ∗) = − log
( et

∗

et∗ + (m− 1)

)
= log(1 + (m− 1)e−t

∗
) =

ε

2
.

As the cross-entropy loss Φ(U, V ) is convex in V and Φ(U, V ) < α we have for the line
segment V (λ) = λV + (1− λ)V ∗ for λ ∈ [0, 1],

Φ(U, V (λ)) ≤ λΦ(U, V ) + (1− λ)Φ(U, V ∗) < λα+ (1− λ)
ε

2
< α.

Thus the whole line segment is contained in Lα and as C is a connected component it has to
be contained in C. However, this contradicts the assumption that for all (U, V ) ∈ C it holds
Φ(U, V ) ≥ ε. Thus on every connected component C of Lα the training loss can be made
arbitrarily close to zero and thus the loss landscape has no bad valleys.

3. Let (U0, V0) be a strict suboptimal local minimum, then there exists r > 0 such that
Φ(U, V ) > Φ(U0, V0) > 0 for all (U, V ) ∈ B((U0, V0), r) \ {(U0, V0)} where B(·, r)
denotes a closed ball of radius r. Let α = min

(U,V )∈∂B
(

(U0,V0),r
)Φ(U, V ) which exists

as Φ is continuous and the boundary ∂B
(
(U0, V0), r

)
of B

(
(U0, V0), r

)
is compact. Note

that α > Φ(U0, V0) as (U0, V0) is a strict local minimum. Consider the sub-level set
D = Lα+Φ(U0,V0)

2

. As Φ(U0, V0) < α+Φ(U0,V0)
2 it holds (U0, V0) ∈ D. Let E be the

connected component of D which contains (U0, V0), that is, (U0, V0) ∈ E ⊆ D. It holds
E ⊂ B

(
(U0, V0), r

)
as Φ(U, V ) < α+Φ(U0,V0)

2 < α for all (U, V ) ∈ E. Moreover,
Φ(U, V ) ≥ Φ(U0, V0) > 0 for all (U, V ) ∈ E and thus Φ can not be made arbitrarily small
on a connected component of a sublevel set of Φ and thus E would be a bad local valley
which contradicts 3.3.2.

4. Suppose by contradiction that (U, V ) is a local maximum. Then the Hessian of Φ is negative
semi-definite. However, as submatrices of negative semi-definite matrices are again negative
semi-definite, then also the Hessian of Φ w.r.t V must be negative semi-definite However, Φ
is always convex in V and thus its Hessian restricted to V is positive semi-definite. The only
matrix which is both p.s.d. and n.s.d. is the zero matrix. It follows that ∇2

V Φ(U, V ) = 0.
One can easily show that

∇2
V:j

Φ =

N∑
i=1

eGij∑m
k=1 e

Gik

(
1− eGij∑m

k=1 e
Gik

)
Ψi:Ψ

T
i:
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From Assumption 3.1 it holds that there exists j ∈ [N ] s.t. σpj is strictly positive, and

thus some entries of Ψi: must be strictly positive. Moreover, one has eGij∑m
k=1 e

Gik
∈ (0, 1).

It follows that some entries of ∇2
V:j

Φ must be strictly positive. Thus ∇2
V:j

Φ cannot be
identically zero, leading to a contradiction. Therefore Φ has no local maximum.

�

Theorem 3.3 shows that there are infinitely many solutions which achieve zero training error, and the
loss landscape is nice in the sense that from any point in the parameter space there exists a continuous
path that drives the loss arbitrarily close to zero (and thus a solution with zero training error) on
which the loss is non-increasing.

While the networks are over-parameterized, we show in the next Section 4 that the modification
of standard networks so that they fulfill our conditions leads nevertheless to good generalization
performance, often even better than the original network. We would like to note that the proof of
Theorem 3.3 also suggests a different algorithm to achieve zero training error: one initializes all
weights, except the weights to the output layer, randomly (e.g. Gaussian weights), denoted as U , and
then just solves the linear system Ψ(U)V = Y to obtain the weights V to the output layer. Basically,
this algorithm uses the network as a random feature generator and fits the last layer directly to achieve
zero training error. The algorithm is successful with probability 1 due to Lemma 3.2. Note that
from a solution with zero training error one can drive the cross-entropy loss to zero by upscaling
to infinity but this does not change the classifier. We will see, that this simple algorithm shows bad
generalization performance and overfitting, whereas training the full network with SGD leads to good
generalization performance. This might seem counterintuitive as our networks have more parameters
than the original networks but is inline with recent observations in Zhang et al. (2017) that state-of-the
art networks, also heavily over-parameterized, can fit even random labels but still generalize well on
the original problem. Due to this qualitative difference of SGD and the simple algorithm which both
are able to find solutions with zero training error, we think that our class of networks is an ideal test
bed to study the implicit regularization/bias of SGD, see e.g. Soudry et al. (2018).

4 EXPERIMENTS

The main purpose of this section is to investigate the generalization ability of practical neural networks
with skip-connections added to the output layer to fulfill Assumption 3.1.

Datasets. We consider MNIST and CIFAR10 datasets. MNIST contains 5.5×104 training samples
and 104 test samples, and CIFAR10 has 5× 104 training samples and 104 test samples. We do not
use any data pre-processing in all of our experiments. For every experiment on CIFAR10 described
below, we consider both settings with and without data-augmentation. For data-augmentation, we
follow the procedure as described in Zagoruyko & Komodakis (2016) by considering random crops
of size 32× 32 after 4 pixel padding on each side of the training images and random horizontal flips
with probability 0.5.

Network architectures. For MNIST, we use a plain CNN architecture with 13 layers, denoted as
CNN13 (see Table 3 in the appendix for more details about this architecture). For CIFAR10 we use
VGG11, VGG13, VGG16 (Simonyan & Zisserman, 2015) and DenseNet121 (Huang et al., 2017). As
the VGG models were originally proposed for ImageNet and have very large fully connected layers,
we adapted these layers for CIFAR10 by reducing their width from 4096 to 128. For each given
network, we create the corresponding skip-networks by adding skip-connections to the output so that
our condition M ≥ N from the main theorem is satisfied. In particular, we aggregate all neurons of
all the hidden layers in a pool and randomly choose from there a subset of N neurons to be connected
to the output layer (see e.g. Figure 2 for an illustration). As existing network architectures have a
large number of feature maps per layer, the total number of neurons is often very large compared to
number of training samples, thus it is easy to choose from there a subset of N neurons to connect
to the output. In the following, we test both sigmoid and softplus activation function (γ = 20) for
each network architecture and their skip-variants. We use the standard cross-entropy loss and train
all models with SGD+Nesterov momentum for 300 epochs. The initial learning rate is set to 0.1 for
Densenet121 and 0.01 for the other architectures. Following Huang et al. (2017), we also divide the
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learning rate by 10 after 50% and 75% of the total number of training epochs. Note that we do not
use any explicit regularization like weight decay or dropout.

In all our experiments, the conditions of Assumption 3.1 are satisfied for the sigmoid activation
function, and thus the main results of Theorem 3.3 hold. However, for softplus, we do not check if
the additional condition in Assumption 3.1 that there exists a backward path from all N skip-neurons
to the first hidden layer only visiting neurons which are not skip-neurons as this is quite costly. Our
main goal in the experiments is to investigate the influence of the additional skip-connections to the
output layer on the generalization performance. We report the test accuracy for the original models
and the ones with skip-connections to the output layer. For the latter one we have two different
algorithms: standard SGD for training the full network as described above (SGD) and the randomized
procedure (rand). The latter one uses a slight variant of the simple algorithm described at the end of
the last section: randomly initialize the weights of the network U up to the output layer by drawing
each of them from a truncated Gaussian distribution with zero mean and variance 2

d where d is the
number of weight parameters and the truncation is done after ±2 standard deviations (standard keras
initialization), then use SGD to optimize the weights V for a linear classifier with fixed features
Ψ(U) which is a convex optimization problem. Note that the rand algorithm cannot be used with
data augmentation in a straightforward way and thus we skip it for this part.

Our experimental results are summarized in Table 1 for MNIST and Table 2 for CIFAR10. For
skip-models, we report mean and standard deviation over 8 random choices of the subset of N
neurons connected to the output.

Sigmoid activation function Softplus activation function
CNN13 11.35 99.20

CNN13-skip (SGD) 98.40± 0.07 99.14± 0.04

Table 1: Test accuracy (%) of CNN13 on MNIST dataset. CNN13 denotes the original architecture
from Table 3 while CNN13-skip denotes the corresponding skip-model. There are in total 179, 840
hidden neurons from the original CNN13 (see Table 3), out of which we choose a random subset of
N = 55, 000 neurons to connect to the output layer to obtain CNN13-skip.

Discussion of results. First of all, we note that adding skip connections to the output improves the
test accuracy in almost all networks (with the exception of Densenet121) when the full network is
trained with SGD. In particular, for the sigmoid activation function the skip connections allow for
all models except Densenet121 to get reasonable performance whereas training the original model
fails. This effect can be directly related to our result of Theorem 3.3 that the loss landscape of
skip-networks has no bad local valley and thus it is not difficult to reach a solution with zero training
error. The exception is Densenet121 which gets already good performance for the sigmoid activation
function for the original model. We think that the reason is that the original Densenet121 architecture
has already quite a lot of skip-connections between the hidden layers which thus improves the loss
surface already so that the additional connections added to the output units are not necessary anymore.

The second interesting observation is that we do not see any sign of overfitting for the SGD version
even though we have increased for all models the number of parameters by adding skip connections
to the output layer and we know from Theorem 3.3 that for all the skip-models one can easily
achieve zero training error. This is in line with the recent observation of Zhang et al. (2017) that
modern heavily over-parameterized networks can fit everything (random labels, random input) but
nevertheless generalize well on the original training data when trained with SGD. This is currently
an active research area to show that SGD has some implicit bias (Neyshabur et al., 2017; Brutzkus
et al., 2018; Soudry et al., 2018) which leads to a kind of regularization effect similar to the linear
least squares problem where SGD converges to the minimum norm solution. Our results confirm that
there is an implicit bias of SGD as we see a strong contrast to the (rand) results obtained by using
the network as a random feature generator and just fitting the last layer which also leads to solutions
with zero training error with probability 1 as shown in Lemma 3.2 and the proof of Theorem 3.3. For
this (rand) version we see that the test accuracy gets worse as one is moving from simpler networks
(VGG11) to more complex ones (VGG16 and Densenet121) which is a sign of overfitting. Thus we
think that our class of networks is also an interesting test bed to understand the implicit regularization
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Sigmoid activation function Softplus activation function

Model C-10 C-10+ C-10 C-10+

VGG11 10 10 78.92 88.62

VGG11-skip (rand) 62.81± 0.39 - 64.49± 0.38 -
VGG11-skip (SGD) 72.51± 0.35 85.55± 0.09 80.57± 0.40 89.32± 0.16

VGG13 10 10 80.84 90.58

VGG13-skip (rand) 61.50± 0.34 - 61.42± 0.40 -
VGG13-skip (SGD) 70.24± 0.39 86.48± 0.32 81.94± 0.40 91.06± 0.12

VGG16 10 10 81.33 90.68

VGG16-skip (rand) 61.57± 0.41 - 61.46± 0.34 -
VGG16-skip (SGD) 70.61± 0.36 86.42± 0.31 81.91± 0.24 91.00± 0.22

Densenet121 86.41 90.93 89.31 94.20
Densenet121-skip (rand) 52.07± 0.48 - 55.39± 0.48 -
Densenet121-skip (SGD) 81.47± 1.03 90.32± 0.50 86.76± 0.49 93.23± 0.42

Table 2: Test accuracy (%) of several CNN architectures with/without skip-connections on CIFAR10
(+ denotes data augmentation). For each model A, A-skip denotes the corresponding skip-model in
which a subset of N hidden neurons “randomly selected” from the hidden layers are connected to the
output units. For Densenet121, these neurons are randomly chosen from the first dense block. The
names in open brackets (rand/SGD) specify how the networks are trained: rand (U is randomized
and fixed while V is learned with SGD), SGD (both U and V are optimized with SGD).

effect of SGD. It seems that SGD selects from the infinite pool of solutions with zero training error
one which generalizes well, whereas the randomized feature generator selects one with much worse
generalization performance.

5 RELATED WORK

In the literature, many interesting theoretical results have been developed on the loss landscape of
neural networks Haeffele & Vidal (2017); Choromanska et al. (2015); Kawaguchi (2016); Safran &
Shamir (2016); Hardt & Ma (2017); Yun et al. (2017); Venturi et al. (2018); Zhang et al. (2018) and
the behavior of SGD for the minimization of training objective has been also analyzed for various
settings (Andoni et al., 2014; Sedghi & Anandkumar, 2015; Janzamin et al., 2016; Gautier et al.,
2016; Brutzkus & Globerson, 2017; Soltanolkotabi, 2017; Soudry & Hoffer, 2017; Zhong et al., 2017;
Tian, 2017; Du et al., 2018; Wang et al., 2018) to name a few. Most of current results on the loss
landscape of neural networks are however limited to shallow networks (one hidden layer), deep linear
networks and/or make assumptions on the distribution of the data. An interesting recent exception is
Liang et al. (2018) where they show for binary classification one neuron with a skip-connection to the
output layer and exponential activation function is enough to eliminate all bad local minima under
mild conditions on the loss function. More closely related in terms of the setting are (Nguyen & Hein,
2017; 2018) where they study the loss surface of fully connected and convolutional networks if one of
the layers has more neurons than the number of training samples for the standard multi-class problem.
However, the presented results are stronger as we show that our networks do not have any suboptimal
strict local minima and there is less over-parameterization if the number of classes is small.

6 CONCLUSION

We have identified a class of deep neural networks whose loss landscape has no bad local valleys.
While our networks are over-parameterized and can easily achieve zero training error, they generalize
well in practice when trained with SGD. Interestingly, a simple different algorithm using the network
as random feature generator also achieves zero training error but has significantly worse generalization
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performance. Thus we think that our class of models is an interesting test bed for studying the implicit
regularization effect of SGD.
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A MATHEMATICAL TOOLS

In the proof of Lemma 3.2 we make use of the following property of analytic functions.

Lemma A.1 (Nguyen, 2015; Mityagin, 2015) If f : Rn → R is a real analytic function which is not
identically zero then the set {x ∈ Rn | f(x) = 0} has Lebesgue measure zero.

We recall the following standard result from topology (see e.g. Apostol (1974), Theorem 4.23, p. 82),
which is used in the proof of Theorem 3.3.

Proposition A.2 Let f : Rm → Rn be a continuous function. If U ⊆ Rn is an open set then f−1(U)
is also open.

10



B PROOF OF LEMMA 3.2

Proof: We assume w.l.o.g. that {p1, . . . , pN} is a subset of the neurons with skip connections to
the output layer (see Assumption 3.1). In the following, we will show that there exists a weight
configuration U such that the submatrix Ψ1:N,1:N has full rank. Using then that the determinant is an
analytic function together with Lemma A.1, we will conclude that the set of weight configurations U
such that Ψ has not full rank has Lebesgue measure zero.

We remind that all the hidden units in the network are indexed from the first hidden layer till the
higher layers as d + 1, . . . , d + H. For every hidden neuron j ∈ [d + 1, d + H], uj denotes the
associated weight vector

uj = [uk→j ]k∈in(j) ∈ R|in(j)|, where in(j) = the set of incoming units to unit j.

Let n1 be the number of units of the first hidden layer.

1. We first pick for all hidden units of the first layer the weights {ud+1, . . . , ud+n1} such that∑
k→j

fk(xi)uk→j 6=
∑
k→j

fk(xi′)uk→j ∀i 6= i′, j ∈ [d+ 1, d+ n1]

Note that if a unit j belongs to the first hidden layer, then every incoming unit k → j must
come from the input layer, that is, k ∈ [1, d]. Thus the above condition can be rewritten as∑

k→j

(xi)kuk→j 6=
∑
k→j

(xi′)kuk→j ∀i 6= i′, j ∈ [d+ 1, d+ n1] (4)

Intuitively, this condition guarantees that the values of every individual unit from the first
hidden layer are different across all training samples. Note that the above sums can be
rewritten as an inner product of some input patch and the corresponding weight vector. Thus
using condition iii) from the Assumptions 3.1, the set of weights of the first hidden layer
which do not satisfy the condition (4) has Lebesgue measure zero.

2. We choose {ud+n1+1, . . . , ud+H} s.t. every weight vector uj has exactly one 1 in and 0
elsewhere.

3. Let α := (αd+1, . . . , αd+H) be a tuple of positive scalars and let β ∈ R such that σpj (β) 6=
0 for every j ∈ [N ]. For every neuron pj(j ∈ [N ]) which has a skip-connection to the
output layer, let us pick the bias

bpj = β − αpj
∑
k→pj

fk(xj)uk→pj .

The biases for the other hidden neurons are set to zero, that is, bj = 0 for every j ∈
{d+ 1, . . . , d+H} \ {p1, . . . , pN} .

4. In the following, we consider a family of configurations of network parameters of the form
(αjuj , bj)

d+H
j=d+1 where (uj , bj)

d+H
j=d+1 are chosen as described above. By our construciton

so far, the output of each hidden neuron is

fpj (xi) = σpj

(
β + αpj

∑
k→pj

(
fk(xi)− fk(xj)

)
uk→pj

)
∀j ∈ [N ],

fj(xi) = σj

(
αj
∑
k→j

fk(xi)uk→j

)
∀j ∈ {d+ 1, . . . , d+H} \ {p1, . . . , pN} . (5)

5. Now, one can show for every α > 0 and every j ∈ [N ] that∑
k→pj

fk(xi)uk→pj 6=
∑
k→pj

fk(xi′)uk→pj ∀i 6= i′.

Moreover, if one sorts all elements of the set{∑
k→pj fk(x1)uk→pj , . . . ,

∑
k→pj fk(xN )uk→pj

}
in increasing order then this

order is invariant w.r.t. every positive tuple α.
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Proof: The statement is true for every j ∈ [N ] where pj ∈ [d+1, d+n1] by our construction
in (4). Note that for those j ∈ [N ] where pj /∈ [d+ 1, d+ n1], it holds by our contruction
in 2) that upj has exactly one 1 in its entries and zero elsewhere. For this purpose, let c(j)
be the index of an incoming unit to every hidden unit j ∈ {d+ n1 + 1, . . . , d+H} such
that uc(j)→j = 1 and uk→j = 0 for every k 6= c(j). With this notation, it holds for every
j ∈ [N ] where pj /∈ [d+ 1, d+ n1] that∑

k→pj

fk(xi)uk→pj = fc(pj)(xi) (6)

By considering the value of the sum
∑
k→pj fk(x)uk→pj at different training samples, it

holds for every i 6= i′ that∑
k→pj

fk(xi)uk→pj <
∑
k→pj

fk(xi′)uk→pj

⇐⇒ fc(pj)(xi) < fc(pj)(xi′)

⇐⇒ σ−1
c(pj)

(
fc(pj)(xi)

)
< σ−1

c(pj)

(
fc(pj)(xi′)

)
⇐⇒ αc(pj)

∑
k→c(pj)

fk(xi)uk→c(pj) < αc(pj)
∑

k→c(pj)

fk(xi′)uk→c(pj)

⇐⇒
∑

k→c(pj)

fk(xi)uk→c(pj) <
∑

k→c(pj)

fk(xi′)uk→c(pj)

where the first step follows from (6), the second step follows from the fact that all activation
functions are strictly increasing by Assumption 3.1 and thus there exists an inverse function,
the third step follows from (5), and the last step follows from the fact that αc(pj) > 0.

Now, if c(pj) is already a hidden unit of the first hidden layer then we are done. Otherwise,
one can repeatedly apply the same chain of inequalities to c(pj), c(c(pj)), . . . until one
eventually reaches a neuron from the first hidden layer.
In summary, we have shown that the order of all elements from the set{∑

k→pj fk(x1)uk→pj , . . . ,
∑
k→pj fk(xN )uk→pj

}
is fully determined by the order

of elements from the set
{∑

k→qj (x1)kuk→qj , . . . ,
∑
k→qj (xN )kuk→qj

}
where qj =

c(c(. . . c(pj) . . .)) ∈ [d + 1, d + n1] is some neuron in the first hidden layer. Moreover,
this order is independent of the chosen α. Note that this order can be different for different
neurons qj in the first hidden layer, and thus can be different for different pj’s.

6. Let π be a permutation such that it holds for every j = 1, 2, . . . , N that

π(j) = arg max
i∈{1,...,N}\{π(1),...,π(j−1)}

∑
k→pj

fk(xi)uk→pj (7)

It follows from our previous argument that π is invariant w.r.t. every α > 0. By definition, it
holds that ∑

k→pj

fk(xπj )uk→pj >
∑
k→pj

fk(xπi)uk→pj ∀ i, j ∈ [N ], i > j

Since π is independent of every positive tuple α, it can be fixed in the beginning by (7) with
some fixed choice of α > 0. Thus one can assume w.l.o.g. that π is the identity permutation
as otherwise one can relabel the training data according to π and the rank of Ψ is invariant
under relabeling. Thus it holds for every α > 0 that

δij :=
∑
k→pj

fk(xi)uk→pj −
∑
k→pj

fk(xj)uk→pj < 0 ∀ i, j ∈ [N ], i > j (8)

Now, we are ready to show that there exists a tuple α = (αd+1, . . . , αd+N ) > 0 for which Ψ has full
rank. We consider two cases:
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• In the first case, the activation functions σpj : R → R for every j ∈ [N ] are strictly
increasing, bounded and limt→−∞ σpj (t) = 0. In the following, let l(j) denote the layer
index of the hidden unit j. For every hidden unit j ∈ {d+ 1, . . . , d+H} we set

αj = max

{
1, max

k∈[N ]|l(pk)=l(j)
maxi>k

σ−1
pk

(ε)− β
fc(pk)(xi)− fc(pk)(xk)

}
(9)

where ε > 0 is an arbitrarily small constant which will be specified later. There are a
few remarks we want to make for Eq. (9) before proceeding with our proof. First, the
second term in (9) can be empty if there is no skip-connection unit pk which lies on the
same layer as unit j, in which case αj is simply set to 1. Second, αj’s are well-defined by
constructing the values fc(pk)(xr), r = 1, . . . , N by a forward pass through the network
(note that the network is a directed, acyclic graph; in particular, in the formula of αj , one
has l(c(pk)) < l(pk) = l(j) and thus the computation of αj is feasible given the values of
hidden units lying below the layer of unit j, namely fc(pk)). Third, since we are considering
the parameter configuration of the form (αjuj , bj)

d+H
j=d+1 and we want to show that there

exists {αj}d+H
j=d+1 for which Ψ has full rank, we need to guarantee that by choosing the

values of {αj}d+H
j=d+1 all the potential parameter sharing conditions of multiple hidden units

from the same layer can still be satisfied. It turns out that this is indeed guaranteed by
our construction. In particular, if j and j′ are two hidden units from the same layer, i.e.
l(j) = l(j′), then it follows from (9) that αj = αj′ . Moreover, the weight vectors uj and
uj′ can be always chosen to be identical while still satisfying the properties mentioned in
the first two construction steps of the proof. Thus it holds that αjuj = αj′u

′ for every two
hidden units j, j′ lying on the same layer, meaning that all the potential weight sharing
conditions between multiple hidden units of the same layer in the network are satisfied.
The main idea of choosing the values of αpj (extracted from (9)) is to obtain

Ψij = fpj (xi) ≤ ε ∀ i, j ∈ [N ], i > j. (10)

To see this, one first observes from (9) that α > 0 and thus it follows from (8) that

δij = fc(pj)(xi)− fc(pj)(xj) < 0 ∀ i, j ∈ [N ], i > j. (11)

Since (9) holds for all the hidden units j in the network, one can replace j in (9) with every
skip-connection unit pj in order to obtain

αpj > max
i>j

σ−1
pj (ε)− β

fc(pj)(xi)− fc(pj)(xj)
∀ j ∈ [N ]

which combined with (11) leads to

αpj (fc(pj)(xi)− fc(pj)(xj)) ≤ σ
−1
pj (ε)− β ∀ i, j ∈ [N ], i > j.

From (5) one has for every i, j ∈ [N ], i > j that

fpj (xi) = σpj

(
β + αpj

∑
k→pj

(
fk(xi)− fk(xj)

)
uk→pj

)
= σpj

(
β + αpj (fc(pj)(xi)− fc(pj)(xj))

)
≤ σpj

(
β + σ−1

pj (ε)− β
)

= ε

which finishes the proof of (10).
Coming back to the main proof of the lemma, since σpj (j ∈ [N ]) are bounded there exists a
finite positive constant C such that it holds that

|Ψij | ≤ C ∀ i, j ∈ [N ] (12)

By the Leibniz-formula one has

det(Ψ1:N,1:N ) =

N∏
j=1

σpj (β) +
∑

π∈SN\{γ}

sign(π)

N∏
j=1

Ψπ(j)j (13)
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where SN is the set of all N ! permutations of the set {1, . . . , N} and γ is the identity
permutation. Now, one observes that for every permutation π 6= γ, there always exists at
least one component j where π(j) > j in which case it follows from (10) and (12) that∣∣∣ ∑

π∈SN\{γ}

sign(π)

N∏
j=1

Ψπ(j)j

∣∣∣ ≤ N !CN−1 ε

By choosing ε =

∣∣∣∏N
j=1 σpj (β)

∣∣∣
2N !CN−1 , we get that

det(Ψ1:N,1:N ) ≥
N∏
j=1

σpj (β)− 1

2

N∏
j=1

σpj (β) =
1

2

N∏
j=1

σpj (β) 6= 0

and thus Ψ has full rank.
• In the second case we consider the softplus activation function under the condition that

there exist N neurons with skip-connection to the output layer which have a path backward
through the network which does not contain any skip-connection neurons.
We choose the α for the non-skip connection neurons as before noting again that by the
particular choice of u it holds,∑

k→pj

fk(xi)uk→pj = fc(pj)(xi)

Then we set all αp1
, . . . , αpN to α we get

fpj (xi) = σpj

(
β + α

∑
k→pj

(
fk(xi)− fk(xj)

)
uk→pj

)
∀j ∈ [N ],

= σpj

(
β + α

(
fc(pj)(xi)− fc(pj)(xj)

))
fj(xi) = σj

(
fc(j)(xi)

)
∀j ∈ {d+ 1, . . . , d+H} \ {p1, . . . , pN} . (14)

Note that by assumption the path c(k)(pj) does not contain any skip connection unit and
will eventually end up at some neuron qj ∈ [d + 1, d + n1] of the first hidden layer after
some Lj steps. Thus we can write

fpj (xi) = σpj

(
β + α

(
g(xi)− g(xj)

))
,

where

g(xi) = σc(pj)(σc(c(pj))(. . . (
∑
k→qj

(xi)kuk→qj ) . . .)) ∀ i ∈ [N ].

Moreover, it holds that g(xi) < g(xj) for every i > j. Note that softplus fulfills for
t < 0, σγ(t) ≤ 1

γ e
γt, whereas for t > 0 one has σγ(t) ≤ 1

γ + t. The latter property
implies σ(K)(t) ≤ K

γ + t. Finally, this together implies that there exist positive constants
c1, c2, c3, c4 such that it holds for all j ∈ [N ] that

|
N∏
j=1

Ψπ(j)j | ≤ c1e
−αc2(c3 + α)N−1.

This can be made arbitrarily small by increasing α. We thus get

lim
α→∞

det(Ψ1:N,1:N ) =

N∏
j=1

σpj (β) 6= 0

So far, we have shown that there always exist U such that Ψ has full rank. Every entry of
Ψ is real analytic as σ is analytic by Assumption 3.1 (note that also the softplus activation
function σγ is analytic). The set of low rank matrices Ψ can be characterized by a system of
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equations such that all the
(
M
N

)
determinants of all N × N sub-matrices of Ψ are zero. As

the determinant is a polynomial in the entries of the matrix and thus an analytic function of
the entries and composition of analytic functions are again analytic, we conclude that each
determinant is an analytic function of U . As shown above, there exists at least one U such that
one of these determinant functions is not identically zero and thus by Lemma A.1, the set of U
where this determinant is zero has measure zero. But as all submatrices need to have low rank
in order that Ψ has low rank, it follows that the set ofU where Ψ has low rank has just measure zero. �

C EXPERIMENT DETAILS

Layer Output size #neurons
Input: 28× 28 28× 28× 1

3× 3 conv − 64, stride 1 28× 28× 64 50176

3× 3 conv − 64, stride 1 28× 28× 64 50176

3× 3 conv − 64, stride 2 14× 14× 64 12544

3× 3 conv − 128, stride 1 14× 14× 128 25088

3× 3 conv − 128, stride 1 14× 14× 128 25088

3× 3 conv − 128, stride 2 7× 7× 128 6272

3× 3 conv − 256, stride 1 7× 7× 256 12544

1× 1 conv − 256, stride 1 7× 7× 256 12544

3× 3 conv − 256, stride 2 4× 4× 256 4096

3× 3 conv − 256, stride 1 4× 4× 256 4096

3× 3 conv − 256, stride 2 2× 2× 256 1024

3× 3 conv − 256, stride 1 2× 2× 256 1024

3× 3 conv − 256, stride 2 1× 1× 256 256

Fully connected, 10 output units

Table 3: The architecture of CNN13 for MNIST dataset. There are in total 179, 840 hidden neurons.
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